FORMATION OF UNUSUAL PYRROLES BY PHOTOLYSIS OF 1-VINYL-4,5-DIHYDRO-1H-1,2,3-TRIAZOLES

Masato M. ITO, Yujiro NOMURA, Yoshito TAKEUCHI, and Shuji TOMODA Department of Chemistry, College of General Education, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153

Photolysis of 4-alkyl-5-amino-l-vinyl-4,5-dihydro- $1\underline{H}$ -1,2,3-triazoles gave not 3-alkylpyrroles but unexpected 2-alkylpyrroles in 80-83 % yields. Similarly 4,4-dimethyltriazole derivatives gave 2,2-dimethyl-2Hpyrroles in 70-74 % yields. 1-Vinylaziridines were assumed as a possible intermediate of this anomalous reaction.

Three reaction paths are expected in the decomposition of 1-vinyl-4,5-dihydro-1H-1,2,3-triazoles (1) after the elimination of nitrogen as shown below: the first is direct ring closure to form 1-vinylaziridines (2) (path a), the second is 1,2alkyl (hydrogen) shift to $\underline{\text{N}}\text{-vinylimines}$ ($\underline{3}$) (path b), and the third is formation of a C-C bond between C-4 of the dihydrotriazole and β -position of the vinyl group to give 1-pyrrolines (4) (path c).

Actually, thermolysis of 4,4-dimethyl-1-(1-phenylvinyl)-5-(1-pyrrolidinyl)-4,5-dihydro-1H-1,2,3-triazole ($1c: R^1=R^5=H, R^2=Ph, R^3=R^4=CH_3, NR_2=C_4H_8N$) in dimethyl sulfoxide is known to give the corresponding \underline{N}^2 -vinylamidine ($\underline{3}$) via path

b, 1) in accord with the general trends of 5-aminotriazolines. 2)

In the present letter we wish to report the photolysis of the 1-vinyl-4,5-dihydro-1 \underline{H} -1,2,3-triazoles ($\underline{1a}$ - \underline{d}), 3) which afforded unexpected pyrrolines and pyrroles.

A solution of 4-methyl-1-(1-phenylvinyl)-5-(1-pyrrolidinyl)-4,5-dihydro-1 \underline{H} -1,2,3-triazole ($\underline{1a}$) in methanol was irradiated with a 100 W high pressure mercury lamp through a pyrex vessel at 0 $^{\circ}$ C for 45 min, until $\underline{1a}$ was completely consumed. After removal of the solvent in vacuo, the residue was purified through alumina column by eluting with dichloromethane to give 2-methyl-5-phenylpyrrole ($\underline{5a}$) in 83 % yield. No 4-methyl-2-phenylpyrrole ($\underline{5'a}$) was formed, strongly indicating that the product was not derived from direct 1,5-ring closure of possible intermediate 1' (path c).

The structure of the pyrrole $\underline{5a}^{4a}$ was determined by spectral and analytical results. In 1 H NMR, a singlet at δ 2.28 (3H) and the signals at δ 7.3-7.8 (5H)

Table 1.	¹³ C NMR	data of	the	pyrroles	<u>5</u> ,	<u>6</u> ,	and	pyrrolines	<u>7</u> a)	(δ;	CDCl ₃).
----------	---------------------	---------	-----	----------	------------	------------	-----	------------	-------------	-----	----------------------

Compound	<u>C-2</u>	<u>C-3</u>		<u>C-4</u>	<u>C-5</u>
<u>5a</u>	128.9	(106.2	and	108.0)	130.8
<u>5b</u>	136.1	(106.5	and	106.6)	131.0
<u>6c</u>	79.5	162.6		123.1	169.6
<u>6d</u>	80.3	153.6		138.1	161.3
<u>7a</u> b)	170.1	40.2		72.2	69.5
<u>7c</u>	167.8	40.7		73.5	73.1

a)
Signals other than the pyrrole ring are omitted.

b) Measured as a mixture with 5a.

indicated the existence of one methyl and one phenyl groups, and it was unequivocally demonstrated by ^{13}C NMR that the product was 2,5-disubstituted pyrrole (Table 1). There are two doublet signals 5) at δ 106.2 and 108.0, corresponding to the methyne carbon of the pyrrole ring. These two signals are assigned to the β -carbon of the pyrrole ring by two reasons; a)the signal of β -carbon of pyrrole itself appears at δ 108, 6) and b) alkyl and aryl substituents of pyrrole rings change little chemical shift values of its unsubstituted ring carbons. Thus, it was demonstrated that the product was 2-methyl-5-phenylpyrrole (5a).

Photolysis of the dihydrotriazoles ($\underline{1b}-\underline{d}$) were carried out in a similar manner as described above to give the corresponding pyrrole derivatives in 70-80 % yields. Spectral data of the products were compatible with the pyrrole ($\underline{5b}$) 4b) and 2H-pyrroles ($\underline{6c},\underline{d}$). 2b)

$$1 \xrightarrow{\frac{h\nu, -N_2}{Path \ a}} \begin{bmatrix} R^1 & R^2 \\ CH = C \\ R_2^5 & N \\ R_2^8 & R^4 \end{bmatrix} \xrightarrow{R^1 \quad R^2} \begin{bmatrix} R^1 & R^2 \\ R_2^5 & R^3 \\ R_2^8 & R^4 \end{bmatrix}$$
 (2)

Formation of the 1-pyrroline $\underline{7}$ may be most simply rationalized by the following reaction path: after evolution of nitrogen, the vinylaziridine $\underline{2}$ would be formed via the path a (Scheme 1). Then, selective ring cleavage of $\underline{2}$ at one of the C-N bonds followed by ring closure would give $\underline{7}$ as depicted in Eq. 2.

Photolysis of 4,5-dihydro- $1\underline{H}$ -1,2,3-triazoles is known to give aziridines, 9)

but the above path contradicts the general trends in the ring cleavage of aziridines in two respects: first, both 1-vinylaziridines and 2-aminoaziridines are known to be rather stable under the similar reaction conditions, 9b,10 and second, thermal or photochemical ring cleavage of aziridines usually occurs at its C-C bond. 11

Attempts to elucidate the actual path of the present unusual reaction as well as to detect the intermediate(s) are in progress.

REFERENCES

- 1) a) Y. Nomura, Y. Takeuchi, S. Tomoda, and M. M. Ito, Chem. Lett., 1979, 187.
 b) Idem., Bull. Chem. Soc. Jpn., 54, No. 10 (1981), in press.
- 2) R. Fusco, G. Bianchetti, and D. Pocar, Gazz. Chim. Ital., <u>91</u>, 933 (1961).
- 3) Y. Nomura, Y. Takeuchi, S. Tomoda, and M. M. Ito, Bull. Chem. Soc. Jpn., $\underline{54}$, 261 (1981).
- 4) The new pyrroles gave satisfactory results in elemental analysis.
 - a) 2-Methyl-5-phenylpyrrole (5a): Mp. 92.5-94 $^{\circ}$ C.
 - b) 2-Ethyl-5-phenylpyrrole (5b): Mp. 47-48.5 $^{\circ}$ C.
- 5) Splitting patterns were obtained by off-resonance decoupling.
- F. J. Weigert and J. D. Roberts, J. Am. Chem. Soc., 90, 3543 (1968);
 R. J. Pugmire and D. M. Grant, J. Am. Chem. Soc., 90, 4232 (1968).
- 7) J. B. Stothers, "Carbon-13 NMR Spectroscopy" Academic Press, New York (1972), Chap. 6 and 7.
- 8) 5,5-Dimethyl-2-phenyl-4-(1-pyrrolidinyl)-1-pyrroline ($\frac{7c}{1}$): MS: $\frac{m}{e}$ 242 (M⁺); IR (CH₂Cl₂): 1615 cm⁻¹ (C=N); ¹H NMR (CDCl₃): δ 1.22 (3H, s), 1.49 (3H, s), 1.8 (4H, m), 2.6 (5H, m), 3.0 (2H, m), 7.4 (3H, m), and 7.8 (2H, m).
- 9) a) P. Scheiner, J. Am. Chem. Soc., <u>88</u>, 4759 (1966).
 - b) M. De Poortere and F. C. De Schryver, Tetrahedron Lett., $\underline{1970}$, 3949.
 - c) M. S. Ouali, M. Vaultier, and R. Carrie, Bull. Soc. Chim. Fr., 1979, II-633.
- 10) Y. Nomura, N. Hatanaka, and Y. Takeuchi, Chem. Lett., 1976, 901.
- H. W. Heine, R. Deavy, and A. T. Durbetaki, J. Org. Chem., <u>31</u>, 3924 (1966);
 R. Huisgen, W. Scheer, and H. Huber, J. Am. Chem. Soc., <u>89</u>, 1753 (1967);
 - A. Padwa, D. Dean, and T. Oine, J. Am. Chem. Soc., 97, 2822 (1975);
 - M. Vaultier, R. Danion-Bougot, D. Danion, J. Hamelin, and R. Carrie, Bull. Soc. Chim. Fr., $\underline{1976}$, 1537; and references therein.